Реализуемость как ресурсная ограниченность

Модели универсального алгоритмического интеллекта могут быть хорошим отправным пунктом. Но также очевидно, что необходим учет ограниченности ресурсов, чтобы эти модели были реализуемы. Ведь именно эта ограниченность во многом определяет специфику наших когнитивных процессов.

Действительно, модели универсального интеллекта не имеют с реальным интеллектом почти ничего общего, если судить по их «когнитивным операциям». Такие модели не будут в явном виде строить систему понятий, не будут осуществлять планирования, не будут обладать вниманием и т.д. Крайне сложно сказать, будут ли они обладать функцией «понимания», самосознанием и т.д. Здесь можно провести (неполную) аналогию с шахматной программой, которая за счет неограниченных ресурсов осуществляет полный перебор. Эта программа крайне проста. Единственная ее фундаментальная операция – это поиск. В ней нет описания шахматных позиций в каких-либо производных терминах, нет ничего похожего на понимание. Но в рамках шахмат она ведет себя идеально. Сходным образом можно попробовать вообразить и идеальный воплощенный интеллект, действующий в реальном мире.

Отсутствие основной части когнитивных функций у такого идеального интеллекта может означать одно из двух. Либо эти функции – следствие ограниченности ресурсов (для ряда из них, например для внимания, это так со всей очевидностью). Либо интеллект – это что-то совсем отличное от того, что под ним обычно подразумевают (а подразумевают средство решения задач, в качестве основной из которых является выживания). Возможно, вторая альтернатива и не столь бессмысленна (и не столь противоречит первой), если интеллектом считать не любой, но некий выделенный способ решения задач (то есть если в интеллекте важна не столько функциональность, сколько способ ее достижения). В то же время, при бесконечных вычислительных ресурсах разумное поведение может достигаться гораздо более простыми средствами. К счастью, обсуждать, следует ли называть разумной систему, реализующую идеальное (по адекватности) поведение за счет «грубой вычислительной силы», а не за счет «интеллектуальности» (некой структурной сложности процессов «мышления»), не обязательно в силу гипотетичности такой системы. Единственное, что нужно обсуждать, – это то, будет ли эта система действительно обладать всеми теми возможностями, что и естественный интеллект. Если в этом будет какое-либо сомнение, то необходимо будет его преодолеть, либо обосновав достижимость соответствующих возможностей, либо уточнив модель.

Идея ограниченных ресурсов как принципиального свойства сильного ИИ, определяющего его архитектуру, уже высказывалась [Wang, 2007]. Но руководствоваться одной только этой идеей также недостаточно, что будет обсуждено ниже. Сейчас лишь отметим, что учет ограниченности ресурсов не должен нарушать (алгоритмической) универсальности интеллекта. Условно говоря, реальный интеллект – это «any-time» метод, который стремится к идеальному интеллекту при неограниченном увеличении вычислительных ресурсов.

С необходимостью ввода ресурсных ограничений согласны и разработчики универсальных моделей алгоритмического интеллекта (см., напр., [Schmidhuber, 2007], [Hutter, 2007]). Попытки ввода ограничений ресурсов в эти модели могут быть рассмотрены как второй шаг в направлении к универсальному ИИ, хотя насколько этот шаг существенный, судить сложно: зачастую эти модели «слишком универсальны» в том смысле, что авторы пытаются заложить в них минимальную предвзятость относительно того, в каком мире предстоит функционировать.

Таким образом, второй методологический принцип заключается в построении архитектуры реального универсального интеллекта путем ввода ресурсных ограничений в модель идеального универсального интеллекта.

Литература